

Indoor BESS Case Study & Fire Protection Design Considerations

Karli Steranka, P.E.

10/17/2024

INTRODUCTION

Karli Steranka, P.E.

- B.S. Fire Protection Engineering (UMD)
- M.S. Fire Protection Engineering (UMD)
- 5+ years fire protection experience
 - Li-ion Battery Hazards
 - Computational Fluid Dynamics Modeling
 - Industrial Hazards

Agenda

01. Introduction

02. Lithium-Ion Battery Uses & Hazards

03. Codes and Standards

UL9540A Overview

04. Case Study

- Original Installation Fire Protection Features
- Failure event and consequences

WHY NOW?

High Energy Density Creates Demand

Source: Ziegler and Trancik (2021), Placke et al. (2017) for 1991-2014; BNEF Long-Term Electric Vehicle Outlook (2023) for 2015-2022 and the latest outlook for 2023 (*) from the BNEF Lithium-Ion Battery Price Survey (2023)

BESS USE CASES

Dedicated Use Building

- Uninterruptable Power Supply (UPS) / back-up power
- > Store energy from PVs
- > Charge EV's
- > Peak shavings
- > AND MORE

Non-Dedicated Use Building

BESS INFORMATION: CELL → SYSTEM

Consequences: Causes: Heat generation, Physical Abuse flammable gas release Deformation Penetration Electrical Abuse Internal Short Circuit External Short Circuit Over voltage Battery • Overcharge Electrolyte e.x. short Thermal Runaway separator breaks gases released Manufacturing (Temperature increases circuit down (80-150°C) uncontrollably) Defects Temperature Increases

BATTERY GAS COMPOSITION

Varies between cell chemistry and form factor

THERMAL PROPAGATION

Cell-to-Cell temperatures can increase without combustion of flammable gasses and in oxygen deprived environments

LI-ION BATTERY HAZARDS

INSTALLATION CONDITIONS IMPACT

Unenclosed

12-13-10 13:37:14

Enclosed

Agenda

01. Introduction

- 02. Lithium-Ion Battery Uses & Hazards
- 03. Codes and Standards
 - UL9540A Overview

04. Case Study

- Original Installation Fire Protection Features
- Failure event and consequences

BESS IN THE FIRE CODES

technology development far outpaces codes and standard development

BESS INFORMATION: STANDARDS

Cell certified to IEC 62619 (UL 1642)

Module Certified to UL 1973

Rack Certified to UL 1973

BMS Certified to IEC 61508

System Certified to UL 9540

Cell, Module, Rack, Installation tested to UL 9540A

www.bess-sdk.com

Agenda

01. Introduction

- 02. Lithium-Ion Battery Uses & Hazards
- 03. Codes and Standards
 - UL9540A Overview

04. Case Study

- Original Installation Fire Protection Features
- Failure event and consequences

CASE STUDY: INDOOR 5MW BESS; ~4,000 SF

FIRE PROTECTION DESIGN STRATEGY

Monitor & Prevent

- BMS monitors cell conditions (voltage, temp, etc.)
- BMS automatically keeps the system within safe operation range (e.g. charging, discharging)

Alert & React

- Alarm upon detection (vesda & gas detection)
- Automatic shutdown and disconnect

Control Fire & Explosion

- Pre-action sprinkler System
 - Explosion prevention (NFPA 69 mechanical exhaust)

Limit Exposures

- Fire rated walls
- Emergency response
- Limit combustible

Early warning gives time for defensive response tactics

ALERT & REACT

- Smoke and Heat Detection
 - Air aspirated smoke detection (large spaces)
 - Spot-type smoke detector
 - Heat detection (integrated into battery packs)
 - Radiant Heat/ IR (outdoor applications)
- Gas Detection

Room equipped with emergency ventilation system (NFPA 69)

Design:

~10 CFM/sqft airflow

Initiation:

Gas detection system

Design Performance:

- maintain combustible concentration of gas within the room < 25% of LEL
- Average gas concentration < 3% LEL
- Local concentration > 25% LEL
- Partial volume deflagration analysis showed no damage to room

FIRE CONTROL DESIGN

Room equipped with pre-action closed head sprinkler system

Design*

- Ordinary hazard 0.2 GPM/sqft
- Standard response

*newer systems we typically recommend extra hazard design

Initiation:

- Vesda gas detection activates solenoid
- Heat/ temperature actives sprinkler link

Design Performance

- Sprinkler system activates sufficiently early to limit fire spread
- Plastic module coverings
- Adjacent module thermal runaway

FIRE EVENT MAY 2023

Detection Performance:

- VESDA and gas detection system successfully activated
 - Detection lines compromised during event

Explosion Protection Performance:

• Successfully mitigated explosion hazard

Actual Sprinkler Performance:

- Likely caused propagation
 - Non-IP rated battery cells
- Entire room sprinkler operation
 - < 0.2 GPM/ft²

"have extensive fire protection systems, which responded immediately to an incident"

Event Key Takeaways:

- Damage limited to the room of origin
- Fire was successfully detected
- Entire room sprinkler system operation
- No explosion occurred

A battery energy storage system caught fire in May at the electrical substation Suffolk County Tax Map Viewer

KEY TAKEAWAYS

Thermal runaway is the uncontrollable increase in temperature in a battery cell

- Thermal runaway can release flammable & toxic gases
- Propagation can occur in the absence of oxygen & without flaming combustion

KEY TAKEAWAYS

855

Standard for the Installation of Stationary Energy Storage Systems

2023

- Codes & standards are still being developed to properly protect these hazards (recommend using most recent editions)
 - Certifications are important to ensure quality of batteries

KEY TAKEAWAYS

Wholistic fire protection design is important to mitigate the consequences of a thermal runaway event

- Prevention, detection, notification, fire control, explosion control
- Proper design, implementation & maintenance can limit damage

Questions?

Karli Steranka ksteranka@fireandriskalliance.com