

Indoor BESS Case Study & Fire Protection Design Considerations

Karli Steranka, P.E.

10/17/2024

INTRODUCTION

Karli Steranka, P.E.

- B.S. Fire Protection Engineering (UMD)
- M.S. Fire Protection Engineering (UMD)
- 5+ years fire protection experience
	- Li-ion Battery Hazards
	- Computational Fluid Dynamics Modeling
	- Industrial Hazards

Agenda

01. Introduction

02. Lithium-Ion Battery Uses & Hazards

03. Codes and Standards

• UL9540A Overview

04. Case Study

- Original Installation Fire Protection Features
- Failure event and consequences

WHY NOW?

High Energy Density Creates Demand

Source**:** Ziegler and Trancik (2021), Placke et al. (2017) for 1991-2014; *BNEF Long-Term Electric Vehicle Outlook* (2023) for 2015-2022 and the latest outlook for 2023 (*) from the BNEF Lithium-Ion Battery Price Survey (2023)

Scaling Lowers Cost

BESS USE CASES

- Uninterruptable Power Supply (UPS) / \blacktriangleright back-up power
- Store energy from PVs
- Charge EV's
- Peak shavings
- AND MORE

Dedicated Use Building Contract Contract

BESS INFORMATION: CELL → SYSTEM

Causes: Consequences: Heat generation, • Physical Abuse flammable gas release • Deformation • Penetration • Electrical Abuse • Internal Short **Circuit** • External Short **Circuit** • Over voltage **Battery** • Overcharge **Electrolyte** Thermal Runaway e.x. short separator breaks gases released • Manufacturing circuit (Temperature increases down (80-150⁰C) uncontrollably) **Defects Temperature Increases**

BATTERY GAS COMPOSITION

Varies between cell chemistry and form factor

THERMAL PROPAGATION

Cell-to-Cell temperatures can increase without combustion of flammable gasses and in oxygen deprived environments

LI-ION BATTERY HAZARDS

INSTALLATION CONDITIONS IMPACT

Unenclosed **Enclosed Enclosed**

12-13-10 13:37:14

Agenda

01. Introduction

- 02. Lithium-Ion Battery Uses & Hazards
- 03. Codes and Standards
	- UL9540A Overview

04. Case Study

- Original Installation Fire Protection Features
- Failure event and consequences

BESS IN THE FIRE CODES

technology development far outpaces codes and standard development

BESS INFORMATION: STANDARDS

Cell certified to IEC 62619 (UL 1642)

Module Certified to UL 1973

Rack Certified to UL 1973

BMS Certified to IEC 61508

System Certified to UL 9540

Cell, Module, Rack, Installation tested to UL 9540A

www.bess-sdk.com

Agenda

01. Introduction

- 02. Lithium-Ion Battery Uses & Hazards
- 03. Codes and Standards
	- UL9540A Overview

04. Case Study

- Original Installation Fire Protection Features
- Failure event and consequences

CASE STUDY: INDOOR 5MW BESS; ~4,000 SF

FIRE PROTECTION DESIGN STRATEGY

- BMS monitors cell conditions (voltage, temp, etc.)
- BMS automatically keeps the system within safe operation range (e.g. charging, discharging)

Alert & React

- Alarm upon detection (vesda & gas detection)
- Automatic shutdown and disconnect

Monitor & Prevent Control Fire & Explosion

- Pre-action sprinkler System
- Explosion prevention (NFPA 69) mechanical exhaust)

Limit Exposures

- Fire rated walls
- Emergency response
- Limit combustible

Early warning gives time for defensive response tactics

DAMAGE

EXTENT OF

• Air aspirated smoke detection

- (large spaces) • Spot-type smoke detector
- Heat detection (integrated into battery packs)
- Radiant Heat/ IR (outdoor applications)
- Gas Detection

• Smoke and Heat Detection

Room equipped with emergency ventilation system (NFPA 69)

Design:

• ~10 CFM/sqft airflow

Initiation:

• Gas detection system

Design Performance:

- maintain combustible concentration of gas within the room < 25% of LEL
- Average gas concentration < 3% LEL
- Local concentration > 25% LEL
- Partial volume deflagration analysis showed no damage to room

FIRE CONTROL DESIGN

Room equipped with pre-action closed head sprinkler system

Design*

- Ordinary hazard 0.2 GPM/sqft
- Standard response

*newer systems we typically recommend extra hazard design

Initiation:

- Vesda gas detection activates solenoid
- Heat/ temperature actives sprinkler link

Design Performance

- Sprinkler system activates sufficiently early to limit fire spread
- Plastic module coverings
- Adjacent module thermal runaway

FIRE EVENT MAY 2023

Detection Performance:

- VESDA and gas detection system successfully activated
	- Detection lines compromised during event

Explosion Protection Performance:

• Successfully mitigated explosion hazard

Actual Sprinkler Performance:

- Likely caused propagation
	- Non-IP rated battery cells
- Entire room sprinkler operation
	- \cdot < 0.2 GPM/ft²

A battery energy storage system caught fire in May at the electrical substation

"have extensive fire protection systems, which responded immediately to an incident"

Event Key Takeaways:

- Damage limited to the room of origin
- Fire was successfully detected
- Entire room sprinkler system operation
- No explosion occurred

A battery energy storage system caught fire in May at the electrical substation Suffolk County Tax Map Viewer

KEY TAKEAWAYS

- **Thermal runaway is the uncontrollable increase in temperature in a battery cell**
	- Thermal runaway can release flammable & toxic gases
	- Propagation can occur in the absence of oxygen & without flaming combustion

KEY TAKEAWAYS

NFPA

the Installation of Stationary **Energy Storage Systems**

2023

- **Codes & standards are still being developed to properly protect these hazards (recommend using most recent editions)**
	- Certifications are important to ensure quality of batteries

KEY TAKEAWAYS

• **Wholistic fire protection design is important to mitigate the consequences of a thermal runaway event**

- Prevention, detection, notification, fire control, explosion control
- Proper design, implementation & maintenance can limit damage

Questions?

Karli Steranka ksteranka@fireandriskalliance.com